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Abstract— Future planetary exploration missions will use cooperative robots to explore and sample rough terrain.
To succeed robots will need to cooperatively acquire and share data.  Here a cooperative multi-agent sensing
architecture is presented and applied to the mapping of a cliff surface.  This algorithm efficiently repositions the
systems’ sensing agents using an information theoretic approach and fuses sensory information using physical
models to yield a geometrically consistent environment map.  This map is then distributed among the agents using
an information based relevant data reduction scheme.  Experimental results for cliff face mapping using the JPL
Sample Return Rover (SRR) are presented.  The method is shown to significantly improve mapping efficiency over
conventional methods.

I. INTRODUCTION

To date planetary robots missions have been limited to moving over rather benign terrain [16].  These systems are
not capable of exploring highly irregular terrain such as cliff surfaces that are potentially geologically rich and hence
very interesting for planetary science [3, 8].  To succeed robot teams working cooperatively to acquire and share
data have been proposed [20].  Here an efficient cooperative multi-agent algorithm for the visual exploration of
unknown environments is proposed.  This algorithm repositions the systems’ sensors using an information theoretic
approach and fuses available sensory information from the agents using physical models to yield a geometrically
consistent environment map while minimizing the motions of the robots over the hazardous surfaces.  This map is
distributed among the agents using an information based relevant data reduction scheme.  Thus, the experiences
(measurements) of each robot become part of the collective experience of the multi-agent team.

The algorithm has been applied in this study to a team of four robots to cooperatively explore a cliff surface.  Figure
1 shows schematically four cooperative robots working in an unstructured field environment to.  One robot (Cliff-
bot) is lowered down a cliff face on tethers.  Two robots (Anchorbots) act as anchor points for the tethers.  A fourth
robot, RECON-bot (REmote Cliff Observer and Navigator) provides mobile sensing.  All the robots are equipped
with a limited sensor suite, computational power and communication bandwidths.  The Cliff-bot, usually the lightest
system, may be equipped with primarily a science sensor suite, and limited sensors for navigation.  The RECON-
bot, serves to observe the environment to be traversed by the Cliff-bot and communicates the data relevant for
navigation to the Cliff-bot.  The RECON-bot has an independently mobile camera and other onboard sensors to map
and observe the environment.  Rocks, outcroppings, other robots, etc.  limit sensing and sensor placement resulting
in uncertainties and occlusions (see Figure 2).  There is significant uncertainty the robots’ locations and poses with
respect to the environment.  Due to these limitations and uncertainties it is difficult or impossible for all robots to
independently measure the environment to control the system.

Environment mapping by mobile robots falls into the category of Simultaneous Localization and Mapping (SLAM).
In SLAM a robot is localizing itself as it maps the environment.  Researchers have addressed this problem for well-
structured (indoor) environments and have obtained important results [1, 2, 4, 5, 6, 9, 10, 11, 21, 22, 23, 24].  These
algorithms have been implemented for several different sensing methods, such as camera vision systems [5, 7, 14],
laser range sensors [22, 23], and ultrasonic sensors [1, 6, 11].  Sensor movement/placement is usually done
sequentially (raster scan type approach), by following topological graphs or using a variety of greedy algorithms that
explore regions only on the extreme edges of the known environment [1, 6, 10, 11, 15, 23, 24].  Geometric
descriptions of the environment is modeled in several ways, including generalized cones, graph models and voronoi
diagrams, occupancy grid models, segment models, vertex models, convex polygon models [6, 10].  The focus of
these works is accurate mapping.  They do not address mapping efficiency.  They also generally assume that the
environment is effectively flat (e.g.  the floor of an office or a corridor) and readily traversable (i.e.  obstacles
always have a route around them) [1, 21, 6, 10, 12, 24] and have not been applied to robot teams working in rough
planetary environments.  Also, prior work has not addressed optimizing the communication between agents for both
multi-agent planning and cooperative map-building.

To achieve the localization function landmarks and their relative motions are monitored with respect to the vision
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systems.  A number of localization schemes have been implemented, including topological generalized voronoi
graphs and global topological maps [6, 10, 22, 23], extended Kalman filters [1, 11, 14], and robust averages [14].
Although novel natural landmark selection methods have been proposed [7, 19], most SLAM architectures rely on
identifying landmarks as corners or edges in the environment [1, 5, 6, 10, 11, 23].  This works best in well-
structured (indoor) environments.  Human intervention also has been used to identify landmarks [21].
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Figure 1: Schematic for a cooperative robot cliff descent        Figure 2: Sensing limitations due to occlusions

This paper presents a cooperative multi-agent algorithm for the visual exploration of an unknown environment.  The
basic algorithm is shown in see Figure 3 [20].  This algorithm fuses sensory information from one or multiple agents
using physical sensor/robot/environment maps to yield geometrically consistent surrogate information in lieu of
missing data due to the environment, task, robot and sensor uncertainties.  The system efficiently repositions its’
sensors using an information theoretic approach so as to optimally fill in uncertain/unknown regions of the
environment map, based on maximizing the expected new information obtained.  The information obtained from this
process is distributed to the systems’ agents.  The information is used by the control and planning architecture.  Thus
a common environment map is built by fusing the data available from the individual robots, providing improved
accuracy and knowledge of regions not visible by all robots.
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Figure 3: An architecture for multi-robot cooperative sensing

In this paper the algorithm is applied to a cliff surface exploration robot team as described above.  In this application
the sensing agent is the JPL Sample Return Rover (SRR) which optimally surveys the cliff surface and transmits the
information to other agents.  Experimental results compare the Model and Information Theory based Sensing And
Fusion ExploreR (MIT-SAFER) architecture to conventional raster (or sequential) sensing schemes.  The algorithm
details are developed and results presented below.

II. MIT-SAFER ANALYTICAL DEVELOPMENT

In general for each sensing agent the algorithm consists of four steps.  See Figure 4.
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Figure 4: Multi robot environment sensing and distribution flow diagram
Step 1. System initialization: Here the environment map is initialized, the robots are localized, and a first map is
generated.  The environment is mapped to a 2.5D elevation grid i.e.  the map is a plane of grid cells where each grid
cell value represents the average elevation of the environment at that cell location.  All robots contributing to or
requiring use of the map are located with respect to the initial map.  For the cliff exploration team, these robots
include the Cliff-bot and the RECON-bot.  Localization may be achieved by either:
(a) Absolute localization—is achieved by mapping a common environment landmark that is visible by all robots or
(b) Relative localization—is done by mapping fiducials on all robots by other robot team members where one robot
is selected as the origin.  Relative localization is used in this application, with the RECON-bot localizing the Cliff-
bot with respect to itself.  Then, each agent initially senses the environment.

Step 2. Critical terrain feature identification: In some applications, certain regions of the terrain may be critical,
requiring early identification and mapping.  An example is determining regions of safe travel for the sensing agents.
In this application, identification of the cliff edge by the RECON-bot is critical.  The edge is parameterized by the
edge of a best-fit non-convex polygon of the local terrain.  This permits the RECON-bot to move along the cliff
edge without falling over it.

Step 3. Optimum information gathering pose selection: A rating function is used to determine the next location
(position and orientation) of the sensing agent from which to explore the unknown environment.  The objective is to
acquire as much new information about the environment as possible with every sensing cycle, while maintaining or
improving the map accuracy.  Hence minimizing the exploration time.  The process is constrained by selecting goal
points that are not occluded and that can be reached by a collision free feasible path.

The new information (NI) is equal to the expected information of the unknown/partially known region viewed from
the sensor pose under consideration.  In the case of the cliff surface exploration application, the sensors are CCD
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stereo cameras.  This is based on the known obstacles from the current environment map, the field of view of the
sensor and a framework for quantifying information.  Shannon showed that the information gained by observing a
specific event among an ensemble of possible events may be described by the following function [18]:
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where qk represents the probability of occurrence for the kth event.  This definition of information may also be
interpreted as the minimum number of states (bits) needed to fully describe a piece of data.  Shannon’s emphasis
was in describing the information content of 1-D signals.  In 2-D the gray level histogram of an ergodic image can
be used to define a probability distribution:
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where fi is the number of pixels in the image with gray level i, N is the total number of pixels in the image, and Ngray

is the number of possible gray levels.  With this definition, the information of an image for which all the qi are the
same—corresponding to a uniform gray level distribution or maximum contrast—is a maximum.  The less uniform
the histogram, the lower the information.

It has been shown that it is possible to extend this idea of information to a 3-D signal [20].  In this paper this idea is
extended to a 2.5D signal—environment elevation map.  The new information content for a given sesnor (camera)
view pose is given by:
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where H is summed over all grid cells, i, visible from camera pose camx,y,z,qp,qy; i
gridn is the number of environment

points measured and mapped to cell i; max
gridn is the maximum allowable mappings to cell i; and i

VP is the probability

of visibility of cell i from the camera test pose.

i
VP is evaluated by computing the likelihood of occlusion of a ray rayx,y,z using the elevation, O bx,y,z, and the

associated uncertainty, sx,y,z, at all cells lying along this ray path shot through each position in the environment grid
to the camera center.  This is given by:
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This definition for NI has an intuitively correct form.  Regions with higher visibility and associated higher level of
unknowns yield a higher expected NI value.  Higher occlusions or better known regions result in lower expected NI
values.

During the mapping process some regions that are expected to be visible may not be, because of sensor
characteristics (e.g.  lack of stereo correspondence due to poor textures or lighting conditions), and inaccuracies in
the data model (e.g.  expected neighboring cell elevations and uncertainties—occlusions).  However, after repeated
unsuccessful measurements of cells expected to be visible, it becomes more likely that sensor characteristics are the
limitation.  This is represented as a data quality function that reduces as the number of unsuccessful measurements
of the visible cell increases.  The probability of visibility of the cell i, i

VP , is pre-multiplied by a “interest function”,

I.F., for the cell i given at the kth unsuccessful measurement by:
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where b is a scaling constant determined empirically—larger values result in faster decrease of I.F.  Note that cells

with low i
VP resulting in an unsuccessful measurement are not as severly penalized as cells with high i

VP .  Hence

occluded regions do not translate to low data quality regions.  This permits future “interest” in such regions that may
be explored later.
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A final step in environment map building is to identify the motion of the camera.  This process eliminates robot
positioning errors, such as camera motion errors, and vehicle suspension motions, and allows for accurate data

fusion.  A single spatial point in the base frame, ir , is related to the image point (ui, vi) in the sensor frame by the

4x4 transformation matrix g01.  Spatial points are selected and tracked based on a Forstner interest operator and a
homography transform [8].

For motion calibration of a camera g01needs to be identified:
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where R01 is the rotational matrix, X is the translation vector, f is the camera focal length, and ki is a scaling
constant.  For computational reasons it is more convenient to treat the 9 rotational components of R 01 as
independent, rather than a transcedental relation of 3 independent parameters.  Each spatial point gives three
algebraic equations, but also introduces a new variable, ki—multiplicative constant to extend the ith image point
vector (u,v,f)i to the ith spatial point in the camera coordinate frame.  ki may be found from the disparity pair of the
stereo images.  For n points we have:
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This set of linear equations can be readily solved using conventional techniques.  A least mean square error solution
is given by:

( ) T1T
01 rrrug

-
=  (8)

The rotation matrix, R01, and the translation vector, X , of the camera frame with respect to the base frame are
extracted directly from this solution of g01.  However, for real measured data and associated uncertainty, a larger
number of spatial points are required to more correctly identify the geometric transformation matrix, g01.  Given the
(i+1)st spatial and image point, from Equation 8, R i+1 and X i+1 can be obtained.  A recursive method is used to
determine the mean and covariance of X  and R01 based on the previous i measurements.

This essentially maintains a measure on how certain the camera motion is with respect to its original configuration
(assuming the original configuration is known very precisely with respect to the common reference frame).  To
obtain an estimate on the position uncertainty of a measured point in the environment, this camera pose uncertainty
must be accounted for.  The measurement z be related to the state vector (actual point position) x  by a non-linear
function, h( x ).  The measurement vector is corrupted by a sensor noise vector v of known covariance matrix, Q.
Assume that the measurement of the state vector x  is done multiple times.  In terms of the current measurement, a
Jacobian matrix of the measurement relationship evaluated at the current state estimate may be obtained.  The state
(or positition) may then be estimated with the Extended Kalman Filter.  Using this updated value for both the
measured point x  and the absolute uncertainty P, the measured point may then be merged with the current
envrionment map using equations 2 and 4.

In addition to maximizing information acquisition, it is also desirable to minimize travel distance and
maintain/improve the map accuracy, while being constrained to move along feasible paths.  A Euclidean metric in
configuration space, with individual weights ai on each degree of freedom of the camera pose c , is used to define
the distance moved by the camera:

2
1

1

2)( ˜
¯

ˆ
Á
Ë

Ê ¢-= Â
=

n

i
iii ccd a                   (9)

where c and c ¢ are vectors of the new and current camera poses respectively.  Here ai is set to unity.  In general
this parameter reflects the ease/difficulty in moving the vision system in the respective axis.  Map accuracy is based
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on the accuracy of localization of each sensing agent.  This may be obtained by adding the localization error of the
agent along the path to the target.  Paths containing more promising fiducials for localization result in higher utility
in determining both the goal location and the path to the goal.  The new information, the travel distance and the net
improvement of map accuracy is combined into a single utility function that may be optimized to select the next
view pose.

Step 4. Map distribution: As each agent maps and fuses an environment section to the environment map, it needs
to distribute this updated map among the other agents.  This is required so that each agent may optimally plan its
next move.  Once completed, the environment map needs to be distributed to the team.  For example, to explore the
cliff, after the RECON-bot has developed the geometrical cliff surface map, it needs to transfer this to the Cliff-bot
for task execution (e.g.  science instrument placement).

Due to communication bandwidth limitations of NASA present and near-term planetary exploration robots, an
appropriate data transfer algorithm needs to be developed.  These communication limitations would be exacerbated
with many cooperating agents.  Thus successful communication requires the reduction of the data set into relevant
data i.e.  only communicate data that is necessary for task execution.

The data reduction algorithm used here breaks down the environment map into a quadtree of interest regions.  This
is achieved by first reducing the entire elevation map with adaptive decimation.  This removes highly insignificant
objects, such as small pebbles.  The resulting data set is divided into four quadrants.  The information content of
each quadrant is evaluated using Equations (1) and (2).  This information content reflects the amount of variation in
the terrain quadrant (where higher information content signifies higher variation in the terrain).  Quadrants with high
information content are further divided into sub-quadrants and the evaluation process is continued.  Once it is
determined that a quadrant does not require further subdivision, an average elevation value of the particular quadrant
is used for transmission (rather than the elevation of all grid cells within that quadrant).  This cutoff threshold of
information is based on a critical robot physical parameter (e.g.  the wheel diameter).  This results in a significantly
reduced data set known as the quadtree of interest regions.  Conventional lossless compression schemes may then
be applied to the reduced data set to further reduce the number of transmission bits.  The flow diagram of this
process is given in Figure 5.

Start

Data convolved  with low pass filter
(remove high frequency noise)

Quadtree decomposition of compressed data set
(quad divided iif information content of any  subquad  

> information content of current quad) 

Base transmission data (BTD) set formed
(a) coordinates of quadtree nodes
(b) value of quadtree node = avg(quad value)

Stop

Transmit data to Cliffbot
(a) wireless handshaking
(b) bit-sum checking 

Conventional compression of BTD 
using lossless  compression algorithm

Data reduced using adaptive decimation
(removes objects insignificant to rover wheel base clearnace )

Lossless data compression
(using predictive compression algorithm)

Figure 5: Inter-robot communication flow diagram
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III. EXPERIMENTAL RESULTS

The basic MIT-SAFER algorithm was applied to the cooperative exploration of cliff surfaces by a team of four
robots.  The JPL Sample Return Rover (SRR) served as the RECONbot for this application.  The SRR is a four-
wheeled mobile robot with independently steered wheels and independently controlled shoulder joints.  It carries a
stereo pair of cameras mounted on a three DOF articulated manipulator.  The SRR is equipped with a 266 MHz PC-
104 computer platform, operating with VX-Works.  Five mapping techniques, including the one developed above,
were implemented.  These were: (Method 1) raster scanning without yaw, (Method 2) raster scanning with yaw,
(Method 3) information based environment mapping with cliff edge assumed to be a straight line segment, (Method
4) information based environment mapping with cliff edge approximated as a non-convex polygon, (Method 5)
information based environment mapping with interest function and cliff edge approximated as a non-convex
polygon.  The first two methods reflect commonly used environment mapping schemes.  The latter three reflect with
increased complexity the algorithm developed here.

The experimental setup for the first study in the Planetary Robotics Lab (PRL) at JPL is shown in Figure 6.  A
recessed sandpit containing several rock piles is mapped.  The edge of the sandpit, a vertical drop, acts as the cliff
edge.  This limits the motion of the RECON-bot to lie in the flat plane behind the cliff edge (see Figure 6).  Figure 7
shows the number of environment grid cells explored as a function of the number of stereo imaging steps.  From this
experimental study, the improved efficiency of the method presented in this paper over conventional raster scanning
methods can be seen, with an order of magnitude more points being mapped by Method 5 over those returned from
Method 1 for the same number of stereo imaging steps.  A significant improvement in efficiency can be seen while
progressing from Method 3 to Method 5.  In Method 4, by parameterizing the cliff edge, the rover is able to follow
the edge more aggressively, thus covering a larger variety of view points.

Figure 5.  Experimental setup in PRL at JPL

with SRR as a RECON-bot, three rock piles,

and a small step edge (marked with dotted

lines) serving as the cliff-edge.

Figure 6. Comparison of the five control methods for efficiency of environment coverage versus the number of imaging steps.

An order of magnitude increase in the number of points mapped for the same number of imaging steps is seen when going from

the simple Method 1 of raster mapping without any camera pan to Method 5 with camera pose control by maximum information

content, cliff edge parameterization, and interest function.

Figure 6: Experimental laboratory setup Figure 7: Amount of environment explored
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Figure 8: Comparison of the number of expected new mapped cells verses the number obtained

Further, it is observed that the left region of the sandpit in Figure 6 yields poor data (due to lack of stereo
correspondence).  Since this region is expected have high information content (due to lack of occlusions), the
algorithm in Method 3 tends to converge to view points looking in that direction.  However, in Method 5, the
algorithm concludes that the data quality is poor and eventually loses interest in this region.  This is seen in Figure 8
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that shows the number of expected environment grid cell measurements as opposed to the number obtained.  In
method 5, there is reasonable agreement.  However, in method 3, while the expected number of measurements is
significant, the obtained number of grid cell measurements drops off to zero.

Field tests were conducted near the Tujunga Dam in Tujunga, CA on a natural cliff face with a vertical slope of
~75°.  This setup seen in Figure 9.  This is the physical realization of the conceptual description provided in section I
of a team of four cooperating robots exploring a cliff surface.  Due to time constraints, experimental tests could only
be run for Method 4 using the maximum information content and Method 5 using the maximum information content
with interest function.  The results of the study for 10 imaging steps is shown in Figure 10.  Figure 11 shows part of
the cliff surface and its corresponding map.  Of particular interest is the rock jumble to the Cliffbot, which may
choose to avoid it during traversal.

Figure 10.  Comparison of the mapping of the cliff-face for Method 3 using maximum information content, and

Method 4 using maximum information content and an interest function. The increase in the number of points

mapped is about 30% for the same number of imaging steps.

Figure 9: Experimental field system setup                 Figure 10: Amount of environment explored

  

(a) View of RECONbot mapping the cliff                      (b) Overhead view of surface mapped
Figure 11: Tajunga dam cliff site

These results demonstrate the effectiveness of the multi-agent environment mapping architecture developed in this
paper.  To demonstrate the effectiveness of the map reduction and distribution algorithm for robots in real Mars field
environments, 32 different elevation maps of fixed dimensions, based on the statistics of Viking I/II Mars lander
data were tested.  The data of each elevation map was reduced with respect to a robot with varying wheel diameter.
To compare the data reduction, a terrain variation parameter, dH, is defined as the terrain elevation variation
normalized by the robot wheel diameter.  Thus it is expected that robots with smaller wheel diameters (higher dH)
require a greater amount of terrain detail for navigation, than those with larger wheel diameters for the same terrain
map.  Figure 12 confirms this expectation.  It shows the data reduction factor as a function of dH using the algorithm
described above (without conventional lossless compression added at the end).  The variation at each data point
represents the variation in data reduction expected for a given elevation map.

Rock jumble Rock jumble
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An example of this data reduction process is shown in Figure 13.  It compares the grayscale elevation map before
and after the data reduction process—lighter regions indicate higher elevations.  For this example, a data reduction
factor of approximately 10 was achieved with a dH = 8.  Although visually the left and right images may appear the
same, closer inspection reveals regions in the transmitted image (such as the bottom right corner) to contain very
little information content.  This indicates that the region in the original elevation contained insignificant terrain
variation with respect to the particular wheel diameter.  However, other regions such as the boulders, indicated in the
original elevation map, that are critical with respect to the wheel diameter, are faithfully transmitted.  It is seen that
using this method, significant data reduction can be achieved while maintaining the overall map structure.
Although, this is applied to a 2.5D environment elevation map here, the algorithm is directly applicable to 3D maps.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Terrain dh (units = rover clearance height)

A
v
e
r
a
g
e
 
d
a
t
a
 
r
e
d
u
c
t
i
o
n
 
r
a
t
i
o

Figure 12: Elevation map data reduction for transmission as a function of wheel diameter variation

World X dimension

W
o
r
l
d
 
Y
 
d
i
m
e
n
s
i
o
n

Original world elevation map

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

World X dimension

W
o
r
l
d
 
Y
 
d
i
m
e
n
s
i
o
n

Transmitted world elevation map

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Figure 13: The original (left) and the process/transmitted (right) environment elevation maps.

IV. CONCLUSIONS

This paper has presented a cooperative multi-agent distributed sensing architecture.  This algorithm efficiently
repositions the systems’ sensors using an information theoretic approach and fuses sensory information from the
agents using physical models to yield a geometrically consistent environment map.  This map is then distributed
using an information based relevant data reduction scheme for communication.  The architecture is proposed for a
team of robots cooperatively interacting to explore a cliff face.  Experimental results using the JPL Sample Return
Rover (SRR) have been presented.  This single rover acts as a surveyor, optimally generating a map of the cliff face.
The method is shown to significantly improve the environment mapping efficiency.  The algorithm shows additional
mapping efficiency improvement when an interest function is included.  This function measures the data quality in
the environment.  Future work includes implementation and testing of the inter-robot communication algorithm on
the experimental platform.
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